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C O N C E R N I N G  T H E  E Q U A T I O N S  

O F  M O V I N G  M E D I A  
O F  T H E  A C O U S T I C S  

A. I. Shnip UDC 534 

Using the methods of rational mechanics, a new equation of the acoustics of inhomogeneous unsteadily 

moving media is derived, lts advantage over traditional approaches is demonstrated. 

1. Equations of the acoustics of an inhomogeneous moving medium were constructed in the classical works 

by Blokhintsev [1 ]. They  are obtained within the framework of the theory of perturbations by linearizing the 

equations of thermohydrodynamics for small perturbations of a given (unperturbed) solution of these equations 

that describes the unperturbed motion of the medium. The result is a system of equations for perturbations of 

velocity, density, and entropy. This system is complex: it contains the fields of velocity, density, and entropy of 

unperturbed motion as parameters and is resolved, as a rule, only for comparatively simple particular cases. At the 

same time it is known that linear approximations for systems of nonlinear equations may differ and correspondingly 

be more or less convenient and also more or less adequate for the purposes set, depending on the stage at which 

linearization is carries out. For example, in [2 ], to analyze the stability of the process of drawing fibers, the system 

of nonlinear equations that describe the drawing of fibers from viscous liquid was linearized relative to small 

perturbations not directly, as it was usually done, but after its reduction, by special transformation, to one equation. 

This approach made it possible to obtain a simple formulation of the problem that has a number of additional 

advantages. 

A similar approach is used in the present work to derive equations of the acoustics of moving media. In 

contrast to the traditional approach, here, using the methods of rational mechanics [4 ], the equation of motion is 

linearized in the reference (Lagrangian) representation and then converted to a spatial (Eulerian) representation, 

retaining only terms linear in perturbations. As a result, for the case of barotropic perturbation one equation is 

obtained for the single quantity, viz., the field of the displacement of the particles of the medium relative to their 

position in unperturbed motion. In the concluding part the advantages of the equation obtained over the traditional 

approach are discussed. Everywhere in what follows definitions and notation of tensors and tensor operations are 

used, and also the apparatus of the kinematics of solid media adopted in the book by Trusdell [3 ]. The bold upper- 

and lower-case letters X denote points in the three-dimensional point Euclidean space and vectors in its 

translational space, while the bold upper-case letters denote second-rank tensors. The vector variables symbolized 

by Greek letters are denoted by arrows. 
- - >  

2. Let us consider a medium that performs motion described by the deformation function X~c relative to the 

reference configuration ic ([3 ], II para 4): 

x = ( x ,  t ) ,  (1 )  

where x is the position (the point of the point Euclidean space) at the lime instant t of that material particle which 

in the reference configuration x was at the X point. 

The motion of the medium (in the absence of mass forces) obeys the first Cauchy law (13], III para 5), 

i.e., the momentum conservation law: 

p~' = div T ,  (2) 
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where p is the densi ty;  T is the Cauchy stress tensor; v is the velocity of the medium def ined as 

v (X, t) = ~Z~0 - ,  (X, t) = Z~ (X, t) . (3) 

The dot  over the symbol denotes the time derivative in the reference representat ion,  i.e., 

~,= 0 a 2 
- v (x ,  0 = - -  -~ (x ,  0 ~ .  (4) 
Ol Ot 2 Zx = 

We assume that  the motion (deformation) is represented  as a superposition of two components:  background,  

i.e., unper tu rbed  motion, and acoustic perturbation. Thus:  

~-~ (X, t) = Z ~ (X, t) + ~ (X ,  t ) ,  (5) 

where Z ~ is the background motion; ~ i s  the perturbat ion,  which is assumed to be small. In physical meaning the 

vector ~ i s  the displacement of the material  particles of the medium relative to their  position in unperturbed motion. 

According to what has been said above, a similar division can also be made for the densi ty  and the stress tensor ,  

and we will assume that  perturbations of the stress tensor  have the form of isotropic pressure  (this corresponds to 

the s t anda rd  assumption that the shear  viscosity is negligible in acoustic motion).  C o n s e q u e n t l y ,  we have 

T = T O - p'I -- T O - p01 - p ' l ,  (6) 

p = po + p , (7) 

where T o is the stress tensor in background motion; p' is the acoustic pressure (p'I is the perturbation of the stress 

tensor; I is a unit tensor; Po is the pressure in background motion; p01 is the equilibrium portion of the stress tensor  

in background motion; T o = T o + po I is the nonequilibrium portion of the stress tensor  in background motion; Po 

is the densi ty  in background motion; p '  is the perturbat ion of density. 

We will emphasize that here  P0 is a function of X and t just as are all the remaining quantities, i.e., the 

background motion, generally speaking, is inhomogeneous,  nonstat ionary,  and compressible.  

As usual, we assume the existence of an equation of state that prescribes the dependence  of pressure on 

the tempera ture  ~ and density p: 

p = ~ (0, p ) ,  (8) 

so that  

p0 = p (00, p0) ,  (9) 

p A i A 

p = ~ (,9, p) - ~ (0 o, po) = p (00 + ~', p0 + p ) - P (%, po) ,  (lO) 

where,  by analogy with (6) and (7), for the t empera tu re  t~ the division of 9 = 0 o + ~9' into the background 

tempera ture  0 o and perturbation of the temperature  0' is adopted. We will consider the acoustic process to be 

barotropic,  i.e., such that there exists a fractional dependence  between ~9' and p '  prescribed,  say, by the function 

ft'(p) so that  ~9' = ~9~(p') (920) -- 0). Then we may write (here and hereaf ter  the symbol:  = means "equality by  

definition") 

p' = P" (00, po, p') : = p (00 + ~-(P'), po + p') - p (00, po)-  (11) 

Isothermal or adiabatic processes can serve as examples of barotropic processes. Linearizing in (11) the 

function ~" relative to the small value p ' ,  we obtain 
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Off (0 o, PO, 0) 2 , (12) p = , p : = a p  , 
op 

where a (the speed of sound) is defined as 

V (  0~(0~ p~  O) ) V ( .  O'~(O~176 O0"(O) OP (0~ P~ (13) 
a (0  o , p o ) : =  = - + 

op 0% op Opo 

Since in the absence of perturbations the small additions ~, p', p '  disappear, and the momentum balance 

must be satisfied, then 

. . - )  

POZ~ = div T 0. (14) 

Let us turn to the continuity equation presented in the reference description (13 l, II para 5): 

Pr = P det F ,  (15) 

where Pr is the density in the reference configuration (it is assumed that the reference configuration is such that 

Pr = const; F is the tensor of the deformation gradient defined as 

F = V x ~ .  (16) 

With account for (5), expression (16) can be represented as 

F = F ~  ' ' 

where F ~ -- VxZ~ F ~ = Vx~. 
Having written the continuity equation (15) for background motion, from it we find 

(17) 

5.1) 

det F ~ = P--Lr. (18) 
P0 

We linearize (15) with account for (5) relative to the perturbation ~ ( s e e  [3 1, the solution of exercise II 

Pr Pr Pr tr (F ~ adj F ~ - P r (I - tr (F ~ (F0) -1 ' 
P = det (F o + F ~) - det F o (det Fo) 2 det F ~ , )) = Po + P �9 (19) 

From this, with account for (18) 

P = - p o t r ( F  ~(F  ~  (20) 

Let us go over in (20) from the reference to the spatial description. The functions represented in the spatial 

description will be denoted by a tilde. For the transition indicated we introduce the function ,~, the reciprocal of 

~ ,  i.e., 

(x, t): = z,r (x, t ) .  (21) 

The function ,X gives the position of X in the reference configuration of that material particle which at the time t 

was at the spatial point x: 

X = X (x, t )  (22) 

We will define the function ~-'as 
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~(x ,  t) : = g (  ~ (x, 0 ,t) .  

Since X is the  reciprocal function of ~ ,  then 

(23) 

~ (X ,  t) = ~(g,< (X, t) , t ) .  (24) 

We will calculate F ~ using ~. Here,  we take into account representation (5) and discard terms of the second o rde r  

F ~ (X, t) = V x ~ ( X ,  t) = V x ~ (Z,c (X, t), t) = V x ~ (x, t) V x (X, t)) = (grad if)  F 0 (2.5) 

In the last te rm the tilde is omitted, since grad means the gradient in the spatial representation ([3 ], II para 6). 
Having .used (25) in (20), we obtain 

P = - p 0 t r ( g r a d ~ )  = - P 0 d i v ~ .  (26) 

Substituting representations (5)-(7) with account for (26), (12) and (14) into (2) and restricting ourselves 
to terms l inear  in perturbations, we obtain 

? -  Z "*0 div ~ =  ~ grad (p0 a2 div ~ ) .  (27) 

By definition, the velocity in background motion ([3 l, I1 para 1) is 

v 0 (x,  0 : = z 0 (x ,  t) .  (28) 

Let us express  this function in a spatial representation, i.e., construct the function 

v'0 (x, t) = v 0 (,X (x, t), t) = Z o (~  (x, t), t) .  (29) 

Since 

v o (x ,  0 = ~-o (x-~ (x ,  t), O, (30) 

then 

% _-_ s O~o 
= Ot + (grad ;lO) (V'o + ? ) "  (31) 

Now, we express ~ in (27) in terms of the function (29) ~. For this, first wc calculate ~ taking account of 

(5) and retaining only terms linear in ~." 

~ ( x ,  t) = ~a (~(  ~ (x ,  0,  0) = Vx ~ ( ~  (x ,  t), t) v o + o~ ~ (  ~ (x,  0, 0 (32) 

Here and  .hereafter 0 t means a partial derivative of the function ~ x ,  t) with respect to time (the second argument) .  
Then for ~ with account for (30) and (31), retaining terms linear in .~, we have 

. ~  

d ~ ..-> 
~ ( x ,  t) = Z tVx * ( z ,  (x ,  0, t) v o (x ,  t) + 0t ~ ( ~  (x,  0, t) t = 

-- [v x v x ~ ( ~  (x ,  0,  t) v o (x,  t) + o t v x ~ (  ~ (x ,  0, t) 1 Vo (x,  t) + 

+ v x ~ ( ~  (x,  t), 0 ot Vo (x,  t) + o t v x ~ ( ~  (x ,  t), t) v o (x ,  t). (33) 
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Moving to a spatial description by means of (22), substituting the resulting expression together with (31) and (29) 
into (27), discarding terms quadratic in ~, and omitting the tilde, we obtain 

1 --Ot 2 + 2 g r a d ~  v 0 + (grad (g rad~) ) (v  O| V o ) ( g r a d ~ -  I d i v ~ )  ~ Or" 

= 1 grad (,/9032 div ~ ) ,  (34)  
PO 

where the symbol | indicates the tensor product of vectors (see [3 ], p. 504), and all the variables are functions 

of x and t. This is the desired equation of the acoustics of moving media. 

In Cartesian coordinates Eq. (34) looks like 

- - +  2 - - v Y  + - - v y v k  + [ J / ) 6 i y  ~Ot + vO - P o O x i  IP~ Oxy) " 
Ot 2 OtOQ OxjOx~ OQ Ox i Ox! 

(35) 

3. Equation (34) has a number of advantages over the traditional formulation of the problem considered. 

So, preserving generality of statement (i.e., the case of an inhomogeneous nonuniformly and unsteadily moving 

medium) the problem in the approximation of a barotropic process was reduced to one equation for one variable, 

viz., the displacement ~of  the particles of the medium relative to their position in background motion. This equation 

contains only the fields of velocity and density of background motion. Even in the barotropic approximation the 

traditional formulation is reduced to a system of two equations for the perturbations of velocity and densily, which 

can be reduced to one equation only for vortex-free fields of background velocity and sound velocity. Moreover, in 

addition to velocity and density fields this system contains a pressure field. These special features of the system 

complicate the statement and solution of specific problems and makes the formulation of boundary conditions more 

difficult. The equation obtained above is free of those drawbacks. Another positive feature of the formulation 
suggested is the fact that the problem formulated turned out to be insensitive to the form of the theological equation 
for background motion: the rheological equation can in principle correspond to a nonlinear viscous viscoelastic or 

even elastic medium; the sole requirement is that the approximation adopted in the derivation for perturbation of 

the stress tensor be a good approximation for this equation. 
�9 Still another argument in favor of the approach suggested is the fact that potentially the region of the 

applicability of the equation obtained is wider. In fact, the rate of acoustic vibrations in intense sound waves amounts 

to a value of the order of meters per second, which often can be comparable with the velocity of background motion. 

At the same time the displacement of the particles of the medium in a sound wave is always much smaller than the 

scales of the problem, in particular, of the sound wavelength. Consequently, the condition of applicability of the 

theory of perturbations, namely, the smallness of the perturbing parameters as compared with the background 

ones, is less rigid in our approach. 

We can illustrate the above by an example showing the simplicity of obtaining particular cases from the 

general equation. For po 32 -- const and the spatially uniform background velocity Vo, by applying the divergence 

operation to Eq. (34) (or (35), which is more illustrative) and taking account of (26) we obtain for the scalar variable 

tp = _ div ~ =  P--- 1 
2 p 

Po Po a 

the following equation 

oZtP 0 (grad qJ) - v 0 + tr ((grad (grad q~)) (v 0 | Vo) ) = aZAq j (36) - -  + 

Ol 2 
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We emphasize that  the terms with the factor Ovo/Ot drop out of the equation, since the two terms that 

contain this factor (the last te rm on the r ight-hand side of Eq. (35)) are mutual ly balanced out in this case. Equation 

(36) coincides completely in form with Eq. (1.85) in [1 ] (written, of course, for another  scalar variable). The  

derivation of Eq. (1.85) in [1 ] is far from being as simple and obvious as was the case with Eq. (36). Moreover, 

the first was obta ined only for the case of constant  velocity v0, while the other  is valid also for a uniform but 

time-variable velocity of background motion. In 11 I an at tempt was made  to obtain the equation of acoustics also 

for the latter case. However,  it is derived not from the general sys tem,  but by going over, for an ordinary  wave 

equation in a quiescent medium,  to a coordinate system moving with a nonuniform velocity. As a result, we obtain 

an equation (see [1 ] (3.7)) that differs from Eq. (36) by the presence of a term of the form 

0Vo (37) 
(grad qJ) �9 Ot " 

But this der ivat ion does not  take account of the presence of iner t ia l  forces that  arc bound to appear  in a 

nonuniformly moving reference  system and that influence the perturbat ions of density; this must  lead to the 

presence of addit ional  terms. Having analyzed the derivation of Eq. (34), we can easily see that the term of the 

dv0 .-,dv 0 
form (grad ~ - - ~  corresponds  to the term (37) in Eq. (34), whereas the term - d i v  ~ ~ just corresponds to the 

inertial forces associated with the perturbations of density in the reference system cocurrent with background 

motion. As was a l ready emphasized above, af ter  taking the divergence in the case of uniform velocity of background 

motion these two terms are mutually cancelled. Thus,  relation (36) (in contrast  to (3.7') in [1 [) represents  a correct 

form of the equation for the acoustics of media that move homogeneously  but nonuniformly.  

In conclusion we note that the above derivation of the equations of acoustics was limited, only for reasons 

of simplicity, to the case of barotropic approximation and can be ex tended  in a ra ther  routine manner  to the general 

case by using, instead of Eq. (11), the energy equation linearized by the scheme given above. In this case the 

problem is reduced to a system of two differential equations for ~ a n d  temperature  perturbations.  

The auther  wishes to express his grat i tude to N. N. Grinchik for a stimulating discussion. 
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N O T A T I O N  

x, reference configuration; ~ ,  deformation; x, point in three-dimensional  Euclidean space; X, point in space 

occupied by a material  particle in reference configuration; p, densi ty of medium; T, Cauchy stress tensor;  v, velocity 

of medium; t, time; ~, perturbat ion of deformation; p, pressure; I, unit  tensor; O, temperature;  ~(p) ,  ~'(9 0, P0, P ' ) ,  

functions determining the barotropic process; a, speed of sound; F, deformation gradicnt tensor; X (x, t), reciprocal 

function of Zx; ~/, xy, v O, Cartesian components for ~, x, v 0, respectively; ~P, scalar acoustic function. Superscripts: 

0 denotes thermomechanical  quantities in background motion; ' (prime) denotes perturbations of thermomechanical  

quantities; ~ denotes  the portion of the deformation tensor corresponding to perturbation.  Subscripts: K identifies 

reference  conf igura t ion  for  the deformation fucntion;  0 deno tes  pressure ,  dens i ty ,  and t empera tu re  of t he  

background motion and also the nonequilibrium part of the stress tensor  in background motion; x, X identify 

variables over which the gradient  is taken; r, denotes density in the reference configuration; t identifies the variable 

(time) with respect to which the partial derivative is taken; i, j, l, k are the indices of the Cartesian components of 

the vectors. 
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